Newest Post

Representasi Binary Tree Pada Array

Index dari array mempresentasikan atau menunjukan nomor node.
index ke-0 merupakan root.
index dari left Child adalah 2p + 1,dimana p = index dari parent
index dari Right Child adalah 2p+ 2,dimana p= index dari parent
index dari Parent adalah(p-1)/p
Right Child dari kanan Lebih besar daripada Left Child
Predecesor = node yang berada diatas node tertentu.
Successor = node yang berada dibawah node tertentu
Ancestor = seluruh node yang terletak setelah node tertentu dan terkletak pada jalur yang sama
Descendat = Seluruh node yang terletak setelah node tertentu dan terletak pada jalur yang sama
Parent = predecesor satu level diatas duatu node
Child = Successor satu level dibawah suatu node
Sibling = node node yang memiliki Parent yang sama
Subtree = suatu node beserta desencandtnya
size = banyaknya node dalam suatu tree
root = node khusus yang tidak memiliki predecesor
leaf = node node dalam tree yang tidak memiliki successsor
degree = banyaknya child dalam suatu tree















TRee

Tree Statik : isi node-nodenya tetap karena bentuk pohonya sudah di tentukan
Tree Dinamik : isi nodenya berubah-ubah karena proses penambahan dan pengahapusan
Node Root
Node root
dalam sebuah tree adlah suatu node yang memiliki hiarki tertinggi dan dapat juga memiliki node node anak.semua node dapat di telusuri dari node root tersebut
Node root
adalah node khususs yang tercipta pertama kalinya.
Node-Node lain di bawah node root saling terhubung satusama lain dan disebut subtree.

TRee

Selasa, 24 April 2018
  • Graph adalah kumpulan dati titik (node) dan garis dimana pasangan – pasangan titik (node) tersebut dihubungkan oleh segmen garis. Node ini biasa disebut simpul (vertex) dan segmen garis disebut ruas (edge)
  • Simpul dan ruas dalam graph dapat diperluas dengan penambahan informasi. Sebagai contoh, simpul bias diberi nomor atau label dan ruas dapat diberi nilai juga. Perluasan dengan pemberian informasi ini sangat berguna dalam penggunaan graph untuk banyak aplikasi computer. Contoh, graph dengan simpul yang merepresentasikan kota dan ruas merepresentasikan jarak yang ditempuh diantara kota – kota tersebut. (atau harga tiket pesawat antara kota – kota tersebut)
  • Dapat digunakan sebagai “transportation network” untuk mempelajari total jarak (atau harga) dari suatu perjalanan dengan banyak kota pemberhentian. Satu kemungkinan pertanyaan yang bias muncul adalah “jalur mana yang terpendek dengan satu atau lebih tempat pemberhentian, yang menghubungkan kota tertentu menuju kota tertentu lainnya dalam transportation network tersebut?”
KELAHIRAN TEORI GRAPH
  • Jembatan Konigsberg
Menurut catatan sejarah, masalah jembatan Konigsberg adalah masalah yang pertama kali menggunakan graph (th. 1736). Masalah jembatan Konigsberg adalah : “apakah mungkin melalui tujuh buah jembatan masing – masing tepat satu kali. Dan kembali lagi ke tempat semula?”. Tak seorangpun yang dapat memecahkan masalah ini. Barulah euler yang pertama kali menemukan jawabannya. Ia memodelkan masalah dengan memodelkannya ke dalam graph. Daratan (titik – titik yang dihubungkan oleh jembatan) dinyatakannya sebagai simpul (vertex) dan jembatan sebagai sisi. Graph dibuat oleh Euler diperlihatkan pada gambar dibawah atas.
  • Jawabannya adalah : orang tidak mungkin berjalan melalui ketujuh jembatan masing – masing satu kali dan kembali ke tempat asal keberangkatan. Singkatnya, tidak terdapat siklus Euler pada graph tersebut
  • Graph yang memenuhi kondisi diatas tersebut kemudian dikenal dengan nama graph Euler dan perjalannya disebut perjalanan Euler
  • Perjalanan Euler adalah perjalanan dari suatu simpul kembali ke simpul tersebut dengan melalui setiap ruas tepat satu kali
  • Perjalanan Euler akan terjadi, jika :
  1. Graf terhubung
  2. Banyaknya ruas yang dating pada setiap simpul adalah genap
Jenis Graph
  • Berdasarkan ada tidaknya gelang atau sisi ganda pada suatu graph, maka graph digolongkan menjadi dua jenis :
  1. Graph sederhana (simple graph)
Graph yang tidak mengandung gelang maupun sisi ganda dinamakan graph sederhana
  1. Graph tak sederhana (unsimple graph / multigraph)
Graph yang mengandung ruas ganda atau gelang dinamakan graph tak sederhana (unsimple graph / multigraph)
Berdasarkan jumlah simpul pada suatu graph, maka secara umum graph dapat digolongkan menjadi dua jenis :
  1. Graph berhingga (limited graph)
Graph berhingga adalah graph yang jumlah simpulnya, n, berhingga
  1. Graph tak berhingga (unlimited graph)
Graph yang jumlah simpulnya, n, tidak berhingga banyaknya
Berdasarkan orientasi arah pada sisi, maka secara umum graph dibedakan atas 2 jenis :
  1. Graph tak berarah (undirected graph)
Graph yang sisinya tidak mempunyai orientasi arah
  1. Graph berarah (directed graph / digraph)
DEFINISI
  • Graph merupakan suatu koleksi dari himpunan VG dan EG
Notasi : G = {VG, EG}
G = Graph
VG = himpunan titik (vertex graph)
EG = himpunan garis (edge graph)
  • Titik : node / vertex
  • Garis : arc / edge
  • Jumlah vertex dalam suatu graph disebut ORDER dari graph tresebut
  • Contoh : graph G dengan order = 4 (jumlah vertex = 4; a, b, c, d)
  • Suatu graph hanya ditentukan oleh vertex – vertex dan edge – edgenya. Posisi dari vertex – vertex dan edge – edge dalam penggambaran tidaklah penting
  • Graph Equivalen : penggambaran graph yang sama
  • 16
  • Suatu graph G disebut Simple Graph, jika :
    • Tidak mempunyai edge yang Self Loop (tidak ada (V,V) dalam G)
    • Tidak mempunyai Multiple Edge (hanya ada (Vi, Vj) dalam G) (V1, V2, V3, … ϵ VG)
  • 17
    • Multiple Edge adalah 1 vertex dihubungkan oleh beberapa edge
    • Contoh ; pada gambar graph equivalen diatas, vertex b dihubungkan oleh edge – edge 1, 2, 3, 5, 6, 7
    • Sedangkan vertex c dihubungkan oleh edge- edge 2, 3, 4
    • Self Loop adalah vertex yang dihubungkan oleh edge – edge menuju edge itu sendiri
    • Contoh : pada gambar graph equivalen diatas, vertex a dihubungkan oleh graph 8 menuju a kembali
    • Suatu graph G disebut Connected (terhubung) jika graph G dapat dipartisi (dibagi) menjadi 2 graph dengan menghapus paling sedikit 1 edge
    • Contoh yang tidak connected : suatu graph G terdiri
    G = {VG, EG}
    VG = {e, f, g, h}
    EG = {1, 2, 3}
  • 18
    • Path dalam graph adalah barisan dari 1 buah edge –edge yang menghubungkan 2 vertex
    • Notasi :
    P(Vi, Vj) = (Vi, X1)(X1, X2)(X2, Xn-1)(Xn-1, Xn)(Xn, Vj)
    • Dari gambar simple graph :
    P(b,d) = (b,c)(c,d)
    P(b,d) = (b,c)(c,b)(b,c)(c,d)
    P(b,d) = (b,d)
    P(b,d) = (b,c)(c,b)(b,d)
    • Length dari suatu path adalah jumlah edge – edge pada path tersebut
    • Contoh : perhatikan gambar simple graph :
    P(b,d) = (b,d)                                     length = 1
    = (b,c)(c,d)                          length = 2
    = (b,c)(c,b)(b,d)                                length = 3
    • Cycle adalah path yang memenuhi syarat sebagai berikut :
    1. Tidak ada edge yang tampil lebih dari satu kali dalam barisan edge dari path tersebut
    Contoh : gambar simple graph
    P(b,d) = (b,c)(c,b)(b,d)
    = tidak boleh
    1. Path harus berbentuk P(V,V)
    2. Tidak ada vertex yang dikunjungi lebih dari satu kali
    Contoh : P(a,a) = (a,b)(b,c)(c,d)(d,b)(b,a)
    B dikunjungi lebih dari 1x
    P(b,b) = (b,c)(c,b)(b,a)(a,c)(c,b)
    C & b dikunjungi 3x
    Contoh Cycle : P(b,b) = (b,d)(d,c)(c,b)
    • Acyclic adalah graph yang tidak mempunyai cycle
    • Contoh : graph G terdiri dari
    G = {VG, EG}
    VG = {a,b,c,d}
    EG = {1,2,3}
  • 19
  • Catatan :
    1. Graph yang simple belum tentu yang acyclic
    2. Graph yang acyclic adalah graph yang simple
    • Graph yang berarah disebut DI-GRAPH / Directed Graph, adalah merupakan graph dimana edge – edgenya mempunyai suatu arah
  • 20
  • Pada gambar ;
  • (a,b) = 1 arah (b,a) = 0 arah
    • Graph yang tidak mempunyai arah boleh bolak – balik
  • 21
  • Pada gambar;
  • (a,b) = 1 arah (b,a) = 1 arah
    OUT DEGREE, IN DEGREE, DEGREE DARI SUATU VERTEX A
    • Vertex a mempunyai :
    1. Out degree (derajat luar) = N
    Jika vertex a mempunyai N edge mengarah keluar
    Misal : vertex a memunyai 2 edge mengarah ke luar (gambar digraph diatas)
    1. In degree (derajat masuk) = N
    Jika vertex a mempunyai N edge mengarah masuk ( gambar digraph diatas)
    1. Degree (derajat) = N
    Jika out degree a ditambah in degree a = N
    Misal : vertex b
    In degree    = 2
    Out degree = 3
    Degree         = 5
    • Contoh : pada gambar digraph diatas;
    Degree (a)          = 3
    Degree(b)           = 5
    Degree(c)            = 3
    Degree(d)           = 5
    16
    • Graph G dengan himpunan vertex V0 dan edge E0 diasumsikan graph berorder N untuk N ≥ 1
    • Salah satu pendekatan untuk graph ini menggunakan matriks Adjacency dengan suatu array A ukuran N x N
    A(i, j)     1 jika edge (Vi, Vj) Eij
    0 jika edge (Vi, Vj) Eij
    • Contoh graph Undirect / matriks simetris
  • 22 23
  • Contoh : graph Direct
  • 24 25
  • PENGGAMBARAN NODE DIRECTORY
    • Penggambaran node dalam directory dibagi dalam 2 bagian :
    1. Directory
    2. Himpunan link list (LL)
    • Setiap record dari link list mempunyai 2 field :
    1. Node indetifier
    2. Suatu link yang menghubungkan elemen lain dari list (next)
    NODE NEXT
    • Directory menggambarkan banyak node
    • Link list menunjukkan edge – edgenya
  • 26 27 28 29
    • Kalau punya harga (untuk penggambaran manajemen proyek) penggambaran node-nya dibagi 3
    • 30

Graph

Selasa, 17 April 2018
STACK & QUEQUE
Definisi
Stack disebut juga tumpukan dimana data hanya dapat dimasukkan dan diambil dari satu sisi.
Karena itu, stack bersifat LIFO(Last In First Out).
Operasi yang dapat dilakukan stack adalah:
1. Menambah (push)
2. Mengambil (pop)
3. megecek apakah stack penuh (isFull)
4. mengecek apakah stack kosong (isEmpty)
5. membersihkan stack (clear).
6. Mencetak isi stack (print)
Operasi-operasi stack
Saat ini, kita akan mencoba membuat stack dan operasi-operasi yang dapat dilakukannya.
1. Mendefinisikan stack dengan menggunakan struct
2. Mendefinisikan max_stack untuk maksimum isi stack
#define max_stack 15
3. Membuat variable array sebagai implementasi stack
stack tumpuk;
4. Mendeklarasikan operasi-operasi/fungsi yang dapat dilakukan stack.
a. Push (menginputkan data pada stack)
b. Pop (mengambil data pada stack)
c. IsFull(megecek apakah stack penuh)
d. isEmpty(mengecek apakah stack kosong)
e. clear (membersihkan seluruh isi stack)
f. print (mencetak seluruh isi stack)
QUEUE
Queue disebut juga antrian dimana data masuk di satu sisi dan keluar di sisi yang lain. Karena itu, queue bersifat FIFO(First In First Out).
Saat ini, kita akan mencoba membuat queue dan operasi-operasi yang dapat dilakukannya.
Hal-hal yang perlu dilakukan untuk membuat queue yaitu
1. Mendefinisikan queue dengan menggunakan struct dimana kita perlu menggunakan variable head dan tail sebagai penanda pada stack.
2. Mendefinisikan max untuk maksimum isi queue
#define max 15
3. Membuat variable array sebagai implementasi queue
queue antri;
4. Mendeklarasikan operasi-operasi/fungsi yang dapat dilakukan queue.
a. Enqueue (menginputkan data pada queue)
b. Dequeue (mengambil data dari queue)
c. isEmpty (mengecek apakah antrian kosong)
d. isFull (mengecek apakah antrian penuh)
e. clear (membersihkan seluruh isi antrian)
f. Print(mencetak seluruh isi antrian)
Advertisemen
STACK adalah salah satu list linear dalam struktur data yang digunakan untuk menyimpan dan mengambil data dengan konsep LIFO (Last In First Out). Dimana dalam stack ini kumpulan data yang masuk diletakkan di atas data yang lain. Dan berdasar konsep LIFO maka data yang terakhir kali disimpan dalam stack akan menjadi data yang pertama kali diambil. Dalam prosesnya, untuk memasukkan sebuah data ke dalam stack atau dengan kata lain ke bagian atas dari sebuah tumpukan digunakan perintah push. Dan untuk memindahkan data dari tempat tersebut digunakan perintah pop. Sedangkan dalam penyajiannya, stack bisa memakai array atau linked list.


struktur data stack

stack

Selasa, 03 April 2018
Tugas Struktur Data

Program Penjualan barang


Harga : Kode :


Asslamualaikum Wr.Wrb
Selamat Datang Di blog saya di sini saya akan mengulang metode ARRAY 2 dimensi
LIHAT GAMBAR DI BAWAH

Pada gambar di atas terdapat array X
kolom yang atas adalah soalnya dan yang bawa adalah jawabanya.
pada kolom soal
mulai dari indeks 0 -2

Mari kita cari penyelesainnya:
kita cari variabel x
1. x[0,1] = x[0,2] (variabel x baris 0 kolom 1 diambil dari variabel x baris 0 kolom 2)
2. x[0,2] = x[2,2] (variabel x baris 0 kolom 1 diambil dari variabel x baris 2 kolom 2)
3. x[1,2] = x[1,0] (variabel x baris 1 kolom 2 diambil dari variabel x baris 1 kolom 0)
4. x[1,0] = y[0,1] (variabel x baris 1 kolom 0 diambil dari variabel y baris 0 kolom 1)
5. x[2,0] = y[0,2] (variabel x baris 2 kolom 0 diambil dari variabel y baris 0 kolom 2)
6. x[2,1] = y[2,0] (variabel x baris 2 kolom 1 diambil dari variabel y baris 2 kolom 0)
7. x[2,2] = y[0,0] (variabel x baris 2 kolom 2 diambil dari variabel y baris 0 kolom 0)

Sekarang kita cari variabel y
8. y[0,0] = y[1,1] (variabel y baris 0 kolom 0 diambil dari variabel y baris 1 kolom 1)
9. y[0,1] = x[0,1] (variabel y baris 0 kolom 1 diambil dari variabel x baris 0 kolom 1)
10. y[1,1] = y[1,2] (variabel y baris 1 kolom 1 diambil dari variabel y baris 1 kolom 2)
11. y[1,0] = x[1,1] (variabel y baris 1 kolom 0 diambil dari variabel x baris 1 kolom 1)
12. y[2,2] = x[1,2] (variabel y baris 2 kolom 2 diambil dari variabel x baris 1 kolom 2)

Beginilah cara pengerjaannya menurut saya. Sekian dulu dari saya.
Waalaikumsalam Wr.Wb.


array 2 dimensi

Selasa, 06 Maret 2018
Struktur Materi Selection Sort












Assalamuakaikum Wr.Wb
masi di strukturdata tentang array guys dsini saya akan memposting tentang teori2 bagaimana metode array terjadi :D diantaranya ada SORTING SELECTION dan INSERTION
yang pertama saya akan memposting tentang sorting, apa si itu sorting mari kita lakukan
saya mempunyai contoh soal seperti table berikut :




Palindrome

Masukkan Data : palindrom : Hasil palindrom :
Data di dalam stack:





20
100
7
50
2
33

pertanyaanya bagaimana agar urutan nomor pada kolom tersebut bias berurutan mulai dari yg terbesar sampai yang terkecil?
mari kerjakan :D
dari table di atas terdapat nilai 100,20,7,50,2,33
dari angka 100 adalah indeks 0 dan angka 33 adalah indeks 5
di mulai dari indeks 100 adalah indeks pertama mari kita bandingkan dengan indeks 1(20)


apakah 100<20?(salah)
maka harus di swep atau indeks 1(20) di pindahkan ke indeks 0(100)
maka :

20
7
100
50
2
33


seperti itu contoh swep pertama, kita lanjutkan ke tahap swep berikutnya
apakah 100(1) lebih besar dari pada 7(2) jawab ya:
maka angka 7 akan berpindah ke indeks(1) dan seratus pindah ke indeks(2)

20
7
50
100
2
33
20
7
50
2
100
33

apakah 100(2) lebih besar dari pada 50(3) ya:






apakah 100(3) lebih besar dari pada 2? Ya:


20
7
50
2
33
100
apakah 100(4) lebih besar dari pada33(5) ya :

INSERTION SORT

Insertion Sort adalah salah satu dari sekian banyaknya algoritma sorting yang sering digunakan selain bubble sort. Insertion Sort mempunyai algoritma yang berbeda dengan bubble sort. Jenis sorting ini akan membandingkan dua elemen data pertama, mengurutkannya, kemudian mengecek elemen data berikutnyasatu persatu dan membandingkannya dengan elemen data yang telah diurutkan. Contoh implementasinya adalah saat kita mengusun kartu sesuai nomornya, kita akan membandingkan kartu satu per satu lalu menginsertnya ke tempat yang seharusnya.

Pengertian Algoritma Insertion Sorting pada java merupakan sebuah algortima pengurutan dengan membandingkan dua elemen data pertama, mengurutkannya, setelah itu baru kemudian mengecek apakah elemen data berikutnya satu satu, kemudian akan dibandingkan lagi dengan elemen data yang sudah diurutkan pada proses sebelumnya. 

Cara pengurutan dalam Insertion Sort:  
    • Membandingkan dua elemen data pertama dan mengurutkannya.
    • Mengambil satu elemen data berikutnya dan membandingkannya dengan dua elemen data pertama yang telah terurut, kemudian mengurutkannya. Elemen data ketiga ini bisa diletakkan sebelum elemen data pertama, setelah elemen data kedua, atau disisipkan diantara elemen data pertama dan kedua.
    • Mengulang langkah kedua hingga seluruh elemen data dalam daftar sudah diurutkan. 





Assalamualaikum Wr.Wb.
 Oke sebelumnya saya membahas tentang array 2 dimensi, sekarang saya akan membahas NESTED LOOP / Perulangan Bersarang. Apa itu Nested Loop? Nested Loop adalah struktur perulangan yang berada di dalam struktur perulangan lainnya. Oke langsung saja saya berikan contohnya
Ini adalah contoh logikanya:


For(int baris=0;baris<=(jumlah akhir baris);baris++)
{
For(int kolom=0;kolom<=(jumlah akhir kolom);kolom++)
{
X[baris,kolom]=baris+kolom;
}
}
Dan ini adalah contoh Array yang harus di isi:

Kalau kita mengerjakan logika Array di atas hasilnya kurang lebih seperti ini:

For(int baris=0;baris<=4;baris++)
{
For(int kolom=0;kolom<=3;kolom++)
{
X[baris,kolom]=baris+kolom;
}
}

Dan ini adalah hasil bila baris dan kolom dihitung menggunakan logika
X[0,0]=0+0;
X[0,1]=0+1;
X[0,2]=0+2;
X[0,3]=0+3;
X[1,0]=1+0;
X[1,1]=1+1;
X[1,2]=1+2;
X[1,3]=1+3;
X[2,0]=2+0;
X[2,1]=2+1;
X[2,2]=2+2;
X[2,3]=2+3;
X[3,0]=3+0;
X[3,1]=3+1;
X[3,2]=3+2;
X[3,3]=3+3;
X[4,0]=4+0;
X[4,1]=4+1;
X[4,2]=4+2;
X[4,3]=4+3;
Dan hasilnya bila dimasukkan ke dalam Array akan seperti ini:

Sekian dulu dari saya, apabila ada yang dipertanyakan atau mempunyai pendapat lain bisa di tuliskan di kolom komentar. Terima kasih atas waktunya.
Wasalammualaikum Wr.Wb.
1.Searching Sequential
Searching Sequential adalah proses membandingkan setiap elemen larik satu persatu secara beruntun, mulai dari elemen pertama samapai elemen yang dicari ditemukan atau seluruh elemen sudah diperiksa.
Di bawah ini kita akan mencari data yang berkriteria 29 :

index = 0
kriteria = 29
   while(kriteria = Data (index);
{
   index ++
}
ketemu = Data(index);


penjelasan:
a.Apakah kriteria 29 sama dengan Data[0](100) : "TIDAK" maka index++ (index++ artinya ke index selanjutnya)
b.Apakah kriteria 29 sama dengan Data[1](10) : "TIDAK" maka index++
c.Apakah kriteria 29 sama dengan Data[2](29) : "YA" maka kita telah menemukan kriteria yang dicari yaitu Data[2](29).


2.Binary Search
Binary search adalah sebuah algoritma pencarian dengan cara membagi data menjadi dua bagian setiap kali terjadi proses pencarian untuk menemukan nilai tertentu dalam sebuah array.

oke kita langsung ke soalnya:


Dari data array di atas kita akan mencari elemen 150. Sebelumnya kita cari letak data tengahnya. Dengan cara seperti ini:
(index awal + index akhir)/2= (0 + 5) / 2 = 5 / 2 = 2,5(Parsefloat 2)
Dari data di atas ditemukan index tengahnya adalah index ke-2



Sekarang kita cari data yang diinginkan:
1.tengah = X[2]
2.kriteria = 150
3.150 > 29




copy by :andri sapto(edit)
source :http://strukturdata-andri.blogspot.co.id/2018/03/searching-algorithms-sequential-binary.html

// Copyright © semester 1 dan 2 //Anime-Note//Powered by Blogger // Designed by Johanes Djogan //